Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00 000 00 00 00	0000000 0000 000	000 000 000	

Hebrew *kol*: a universal quantifier as an existential undercover

Moshe E. Levin Daniel Margulis mosheel.levin@mail.huji.ac.il daniel.margulis@mail.huji.ac.il

Linguistics department and the Language, Logic and Cognition Center Hebrew University of Jerusalem

Sinn und Bedeutung 18, University of the Basque Country, September 2013

3

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
		0000000	000	
	00			

Outline

Introduction

Data and preliminary analysis

The universal import of *kol*

The NPI-like behavior of kol

An apparent challenge: Free choice inferences with kol

An immediate solution: wide scope universal

Problem: interpretation in interrogatives

Proposal: strengthened existential

Assumptions

Application

Embedding in a general theory of PSIs

Wrap up

Previous proposals: discussion

Open issues

Summary

3

(日) (同) (三) (三)

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00	0000000	000	
	00	000	000	
	00			

Outline Introduction

Data and preliminary analysis

The universal import of kol

The NPI-like behavior of kol

An apparent challenge: Free choice inferences with kol

An immediate solution: wide scope universal

Problem: interpretation in interrogatives

Proposal: strengthened existential

Assumptions

Application

Embedding in a general theory of PSIs

Wrap up

Previous proposals: discussion

Open issues

Summary

э.

・ロン ・回と ・ヨン ・ ヨン

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00 000 00	0000000 0000 000	000	
	00			

Background and overview

Slides: http://is.gd/kolsub

- The Hebrew determiner kol has a prominent interpretation as a (distributive) universal quantifier.
- In light of this, it has traditionally and almost unarguably been considered to be truth-conditionally a universal quantifier.
- ► To illustrate the prevalence of this position, note that any Hebrew speaker would describe *kol* in universal terms. As a matter of fact, the very Hebrew term for *universal* is an adjectival form of *kol*.
- ▶ The goal of this talk is to argue that contrary to the widely accepted analysis, *kol* is an existential quantifier whose universal import is a result of strengthening.

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00	0000000	000	
	000	0000	000	
	00	000	000	
	00			

Outline

Introduction

Data and preliminary analysis

The universal import of *kol* The NPI-like behavior of *kol* An apparent challenge: Free choice inferences with *k* An immediate solution: wide scope universal Problem: interpretation in interrogatives

Proposal: strengthened existential

Assumptions

Application

Embedding in a general theory of PSIs

Wrap up

Previous proposals: discussion

Open issues

Summary

э.

・ロン ・回と ・ヨン ・ ヨン

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	●O ○○○ ○○ ○○ ○○	0000000 0000 000	000 000 000	

The universal import of kol

Outline

Introduction

Data and preliminary analysis

The universal import of kol

The NPI-like behavior of *kol* An apparent challenge: Free choice inferences with *kol* An immediate solution: wide scope universal Problem: interpretation in interpretations

Proposal: strengthened existential

Assumptions

Application

Embedding in a general theory of PSIs

Wrap up

Previous proposals: discussion

Open issues

Summary

= na0

・ロト ・回ト ・ヨト ・ヨト

Introduction	Data and preliminary analysis ○● ○○ ○○ ○○ ○○ ○○	Proposal: strengthened existential 00000000 0000 000	Wrap up 000 000 000	References
The universal import of	of kol			

Examples: *kol*'s universal meaning [=U-*kol*]

- Some typical examples (patterns like *every*):
 - a. (etmol) kol yeled ciyer et acmo b-a-maxberet (yesterday) kol boy drew acc self in-the-notebook Selo his (yesterday,) every boy drew [a picture of] himself in his notebook
 - kol yeled higi'a kol boy arrived
 Every boy arrived

For convenience, we label this interpretation U-kol.

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00 •00 00		000 000 000	

The NPI-like behavior of kol

Outline

Introduction

Data and preliminary analysis

The universal import of kol

The NPI-like behavior of kol

An apparent challenge: Free choice inferences with *kol* An immediate solution: wide scope universal Problem: interpretation in interrogatives

Proposal: strengthened existential

Assumptions

Application

Embedding in a general theory of PSIs

Wrap up

Previous proposals: discussion

Open issues

Summary

= na0

・ロ・ ・四・ ・ヨ・ ・ ヨ・

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References		
		0000000 0000 000	000 000 000			
The NPI-like behavi	The NPI-like behavior of kol					

An apparent challenge: *kol* in DE environments [=NPI-*kol*]

- ▶ In DE environments *kol*'s interpretation parallels with that of *any*:
 - (2) lo nigram *kol* nezek neg was.caused *kol* damage No damage was caused
 - Francez & Goldring (2012) cite Doron & Mittwoch's (1986) description of *kol* in terms of a universal that behaves as an NPI.

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
		0000000 0000 000	000 000 000	
The NPL like behavior of kel				

An apparent challenge: *kol* in DE environments [=NPI-*kol*]

- (3) sarat ha-miSpatim hitnagda Se-yevuca minister the-law objected that-will.be.performed kol Sinui be-takciv beit ha-miSpat ha-'elyon kol change in-budget house the-court the-supreme The minister of justice objected to performing any change in the budget of the supreme court.
- ha-mu'amad lo kibel kol tSuva the-candidate neg received kol response The candidate did not receive any response.

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
		0000000 0000 000	000 000 000	

An apparent challenge: Free choice inferences with kol

Outline

Introduction

Data and preliminary analysis

The universal import of *kol* The NPI-like behavior of *kol*

An apparent challenge: Free choice inferences with kol

An immediate solution: wide scope universal

Problem: interpretation in interrogatives

Proposal: strengthened existential

Assumptions

Application

Embedding in a general theory of PSIs

Wrap up

Previous proposals: discussion

Open issues

Summary

< □ → < □ → < ≧ → < ≧ → ≧ ク Q (* undercover 11/45

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
		0000000 0000 000	000 000 000	

An apparent challenge: Free choice inferences with kol

kol in modal environments [=FC-kol]

- A third interpretation is that found with possibility modals:
 - (5) yosi raSai le'exol kol ugiya
 y. is.allowed to.eat kol cookie
 Yossi may eat any cookie.
 - (6) ata yaxol lavo *kol* yom you may to.come *kol* day
 - a. You may come any day.
 - b. You may come every day.

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00 000 00 ●0 00	0000000 000 000	000 000 000	

An immediate solution: wide scope universal

Outline

Introduction

Data and preliminary analysis

The universal import of *kol* The NPI-like behavior of *kol* An apparent challenge: Free choice inferences v

An immediate solution: wide scope universal

Problem: interpretation in interrogatives

Proposal: strengthened existential

Assumptions

Application

Embedding in a general theory of PSIs

Wrap up

Previous proposals: discussion

Open issues

Summary

13/45

= na0

・ロト ・回ト ・ヨト ・ヨト

Introduction	Data and preliminary analysis ○○ ○○ ○○	Proposal: strengthened existential 00000000 0000 000	Wrap up 000 000 000	References
	00			
An immediate soluti	on: wide scope universal			

► How could the traditional universal analysis of *kol* be reconciled with the above data?

イロン 不同 とくほう イヨン

14/45

э.

► A potential unified account: *kol* has the semantics of a universal quantifier and it takes wide scope.

Introduction	Data and preliminary analysis	Proposal: strengthened existential 00000000 0000 000	Wrap up 000 000 000	References
	00			
An immediate solution	: wide scope universal			

- ► How could the traditional universal analysis of *kol* be reconciled with the above data?
- ► A potential unified account: *kol* has the semantics of a universal quantifier and it takes wide scope.
- ▶ kol's universal semantics is reflected trivially in the cases of U-kol.

(7) a. [kol boy arrived]
$$\forall x \in D[boy(x) \rightarrow arrived(x)]$$

э.

Introduction	Data and preliminary analysis	Proposal: strengthened existential 00000000 0000 000	Wrap up 000 000 000	References
	00			
An immediate solution	: wide scope universal			

- ► How could the traditional universal analysis of *kol* be reconciled with the above data?
- ► A potential unified account: *kol* has the semantics of a universal quantifier and it takes wide scope.
- kol's universal semantics is reflected trivially in the cases of U-kol.
- NPI-kol is derived from the universal by scoping above DE operators present in the LF.

(7) a.
$$[kol \text{ boy arrived}]$$

 $\forall x \in D[boy(x) \rightarrow arrived(x)]$
b. $[[kol \text{ damage}]_x \text{ neg was.caused } x]$
 $\forall x \in D[damage(x) \rightarrow \neg[was.caused(x)]]$

Introduction	Data and preliminary analysis ○○ ○○ ○●	Proposal: strengthened existential 00000000 0000 000	Wrap up 000 000 000	References
	00			
An immediate soluti	on: wide scope universal			

- ► How could the traditional universal analysis of *kol* be reconciled with the above data?
- ► A potential unified account: *kol* has the semantics of a universal quantifier and it takes wide scope.
- ▶ *kol*'s universal semantics is reflected trivially in the cases of U-*kol*.
- NPI-kol is derived from the universal by scoping above DE operators present in the LF.
- ► FC-*kol* is derived by scoping *kol* above a possibility modal.

7) a.
$$[kol \text{ boy arrived}]$$

 $\forall x \in D[boy(x) \rightarrow arrived(x)]$
b. $[[kol \text{ damage}]_x \text{ neg was.caused } x]$
 $\forall x \in D[damage(x) \rightarrow \neg [was.caused(x)]]$
c. $[[kol \text{ cookie}]_x \text{ may yossi eat } x]$
 $\forall x \in D[cookie(x) \rightarrow \diamond [eat(x)(yossi)]]$

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00 000 00 00 ●0	0000000 0000 000	000 000 000	

Problem: interpretation in interrogatives

Outline

Introduction

Data and preliminary analysis

The universal import of *kol* The NPI-like behavior of *kol* An apparent challenge: Free choice inferences with *kol* An immediate solution: wide scope universal

Problem: interpretation in interrogatives

Proposal: strengthened existential

Assumptions

Application

Embedding in a general theory of PSIs

Wrap up

Previous proposals: discussion

Open issues

Summary

I naa

・ロト ・回ト ・ヨト ・ヨト

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00 000 00 00 0 0	0000000 0000 000	000 000 000	
Problem: interpretation	in interrogatives			

Problem: interpretation in interrogatives

- Context: A governmental office is waiting for three responses to three questions it has sent out. An hour ago, the first response has arrived. No additional responses have arrived.
- Question:
 - (8) ha'im hitkabla kol tSuva? Q was.received.3sg kol response Was any response received?
- Given the above context, the answer to (8) is positive.
- If kol is a universal quantifier, such an answer would not be predicted.

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00	0000000	000	
	00	000	000	

Outline

Introduction

Data and preliminary analysis

The universal import of *kol* The NPI-like behavior of *kol* An apparent challenge: Free choice inferences with *kol* An immediate solution: wide scope universal Problem: interpretation in interrogatives

Proposal: strengthened existential

Assumptions

Application

Embedding in a general theory of PSIs

Wrap up

Previous proposals: discussion

Open issues

Summary

э.

・ロン ・回と ・ヨン ・ ヨン

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
		000000 000 000	000 000 000	

Outline

Introduction

Data and preliminary analysis

The universal import of *kol* The NPI-like behavior of *kol* An apparent challenge: Free choice inferences with *ko*. An immediate solution: wide scope universal Problem: interpretation in interrogatives

Proposal: strengthened existential

Assumptions

Application

Embedding in a general theory of PSIs

Wrap up

Previous proposals: discussion

Open issues

Summary

= nar

・ロト ・回ト ・ヨト ・ヨト

Introduction	Data and preliminary analysis 00 000 00 00 00 00	Proposal: strengthened existential ○●○○○○○ ○○○	Wrap up 000 000 000	References
Assumptions				

Towards a proposal

We have seen that *kol* behaves like a universal quantifier in UE contexts and like an existential quantifier in DE contexts. We have shown from questions that a solution in terms of a wide scope universal won't explain the data.

э.

イロン 不同 とくほう イヨン

Introduction	Data and preliminary analysis OO OOO OO OO OO	Proposal: strengthened existential ○●○○○○○ ○○○	Wrap up 000 000 000	References
Assumptions				

Towards a proposal

- We have seen that kol behaves like a universal quantifier in UE contexts and like an existential quantifier in DE contexts. We have shown from questions that a solution in terms of a wide scope universal won't explain the data.
- Our proposal is that *kol* is an existential quantifier whose universality comes about by strengthening.

э.

Introduction	Data and preliminary analysis 00 000 00 00 00	Proposal: strengthened existential OO●OOOOO OOOO OOO	Wrap up 000 000 000	References

Exhaustification

- Exhaustification, an operation of grammatical strengthening, has been proposed for explaining phenomena like Scalar Implicatures, Free Choice inferences and NPIs (Krifka (1995), Chierchia (2006, 2013), Fox (2007), a.o.).
- An exhaustivity operator is a covert counterpart of only which takes two arguments: a proposition (the prejacent) and a set of alternatives, and returns it conjoined with the negation of all non-weaker alternatives.

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
		00000000 0000 000	000 000 000	

Definition of exhaustification

- Following Fox (2007) we define the exhaustivity operator EXH in the following way, using the notion of innocent excludability (IE):
 - (9) a. $\llbracket Exh \rrbracket_{Alt(p)}(p)(w) \Leftrightarrow p(w) \land \forall q \in Excludable(p, Alt(p))[\neg q(w)]$
 - b. $Excludable(p, Alt(p)) = \cap \{Alt(p)' \subseteq Alt(p) : Alt(p)' \text{ is a maximal set in Alt(p), s.t. } \{\neg p : p \in Alt(p)'\} \cup \{p\} \text{ is consistent}\}$
 - c. Alt(p) stands for the set of alternatives of the prejacent p.
- Exhaustification applies recursively until no additional strengthening occurs (that is, until applying EXH would not provide additional information).

Introduction	Data and preliminary analysis 00 000 00 00 00 00	Proposal: strengthened existential	Wrap up 000 000 000	References
Assumptions				

The semantics of kol

kol has the truth-conditions of an existential quantifier:

(10) $\llbracket kol \rrbracket(P)(Q) \Leftrightarrow \exists x \in D[P(x) \land Q(x)]$

Introduction	Data and preliminary analysis 00 000 00 00 00 00	Proposal: strengthened existential	Wrap up 000 000 000	References
Assumptions				

The semantics of kol

kol has the truth-conditions of an existential quantifier:

(10) $\llbracket kol \rrbracket(P)(Q) \Leftrightarrow \exists x \in D[P(x) \land Q(x)]$

- ▶ kol requires to be in the scope of an exhaustivity operator (as in Chierchia's (2006, 2013) analysis for PSIs like any).
- ▶ *kol* introduces alternatives which cannot be pruned (i.e. neglected).

Introduction	Data and preliminary analysis 00 000 00 00 00	Proposal: strengthened existential	Wrap up 000 000 000	References

The semantics of *kol*

kol has the truth-conditions of an existential quantifier:

(10) $\llbracket kol \rrbracket(P)(Q) \Leftrightarrow \exists x \in D[P(x) \land Q(x)]$

- kol requires to be in the scope of an exhaustivity operator (as in Chierchia's (2006, 2013) analysis for PSIs like any).
- ▶ *kol* introduces alternatives which cannot be pruned (i.e. neglected).
- The set of alternatives associated with kol contains its domain alternatives. That is:

(11)
$$Alt(\llbracket kol \rrbracket(P)(Q)) = \{ \exists x \in D'[P(x) \land Q(x)] : D' \subseteq D \}$$

Introduction	Data and preliminary analysis 00 000 00 00 00	Proposal: strengthened existential	Wrap up 000 000 000	References

The semantics of kol

kol has the truth-conditions of an existential quantifier:

(10) $\llbracket kol \rrbracket(P)(Q) \Leftrightarrow \exists x \in D[P(x) \land Q(x)]$

- kol requires to be in the scope of an exhaustivity operator (as in Chierchia's (2006, 2013) analysis for PSIs like any).
- ▶ *kol* introduces alternatives which cannot be pruned (i.e. neglected).
- The set of alternatives associated with kol contains its domain alternatives. That is:

(11) $Alt(\llbracket kol \rrbracket(P)(Q)) = \{ \exists x \in D'[P(x) \land Q(x)] : D' \subseteq D \}$

A crucial part is that this set of alternatives does not include a scalar alternative, namely the universal quantifier:

(12)
$$[\forall x \in D[P(x) \to Q(x)]] \notin Alt(\llbracket kol \rrbracket(P)(Q))$$

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
		00000 000 000 000	000 000 000	

Disjunctions with conjunctive meaning

- We know that existential quantification can be put in terms of disjunction.
- It has been argued that sentences with disjunctive constructions can get conjunctive interpretations.
- A familiar case is that of Free Choice disjunctions:
 - (13) You may eat ice cream or cake
 - a. \rightsquigarrow You may eat ice cream
 - b. \rightsquigarrow You may eat cake

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00	00000000	000	
	00	000	000	
	00			

Disjunctions with conjunctive meaning

In addition, it has been argued that even simple unmodalized sentences with disjunctive constructions sometimes also end up with a conjunctive meaning:

◆□> ◆□> ◆三> ◆三> ● □ ● のへの

24/45

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00	00000000	000	
	00	000	000	
	00			

Disjunctions with conjunctive meaning

- In addition, it has been argued that even simple unmodalized sentences with disjunctive constructions sometimes also end up with a conjunctive meaning:
 - Singh et al. (2012): children reject sentences of the form in (14-a) if the statement in (14-b) is false:
 - (14) a. The monkey is holding a flower **or** a book.
 - b. The monkey is holding a flower **and** a book.

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00	00000000	000	
	00	000	000	
	00			

Disjunctions with conjunctive meaning

- In addition, it has been argued that even simple unmodalized sentences with disjunctive constructions sometimes also end up with a conjunctive meaning:
 - Singh et al. (2012): children reject sentences of the form in (14-a) if the statement in (14-b) is false:
 - (14) a. The monkey is holding a flower **or** a book.
 - b. The monkey is holding a flower **and** a book.
 - Meyer (2011):
 - (15) Bernadette must be rich or else she wouldn't own a Porsche.
 - a. \rightsquigarrow Bernadette is rich.
 - b. \rightarrow If Bernadette wasn't rich, she wouldn't own a Porsche.

< □ → < □ → < ≧ → < ≧ → ≧ ク Q (* undercover 24/45

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00 000 00 00 00	000000● 000 000 000	000 000 000	

Disjunctions with conjunctive meaning

- It has been proposed that such interpretations result from strengthened disjunctions lacking scalar alternatives.
- Similarly, we propose that *kol* is an existential quantifier that lacks scalar alternatives and thus may get strengthened to receive a universal meaning.

= nan

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
		0000000 ●000 000	000 000 000	

Outline

Introduction

Data and preliminary analysis

The universal import of *kol* The NPI-like behavior of *kol* An apparent challenge: Free choice inferences with *kol* An immediate solution: wide scope universal Problem: interpretation in interrogatives

Proposal: strengthened existential

Assumptions

Application

Embedding in a general theory of PSIs

Wrap up

Previous proposals: discussion

Open issues

Summary

= na0

・ロト ・回ト ・ヨト ・ヨト

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00 000 00 00 00	0000000 0000 000	000 000 000	

- Assume a toy model of two boys:
 - (16) EXH EXH kol boy arrived
 - a. $D = \{yossi, john\}.$
 - b. a :=yossi arrived; b :=john arrived
 - c. $\llbracket kol \text{ boy arrived} \rrbracket = \exists x \in D[boy(x) \land arrived(x)] \equiv a \lor b$

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00	0000000	000	
	00	000	000	

- Assume a toy model of two boys:
 - (16) EXH EXH kol boy arrived
 - a. $D = \{yossi, john\}.$
 - b. *a* :=yossi arrived; *b* :=john arrived
 - c. $\llbracket kol \text{ boy arrived} \rrbracket = \exists x \in D[boy(x) \land arrived(x)] \equiv a \lor b$
 - d. $Alt(\llbracket kol \text{ boy arrived} \rrbracket) = \{a \lor b, a, b\}$

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00	0000000	000	
	000	0000	000	
	00	000	000	
	00			
	00			

- Assume a toy model of two boys:
 - (16) EXH EXH kol boy arrived
 - a. $D = \{yossi, john\}.$
 - b. *a* :=yossi arrived; *b* :=john arrived
 - c. $\llbracket kol \text{ boy arrived} \rrbracket = \exists x \in D[boy(x) \land arrived(x)] \equiv a \lor b$
 - d. $Alt(\llbracket kol \text{ boy arrived} \rrbracket) = \{a \lor b, a, b\}$
 - e. $EXH_{Alt(a \lor b)}[a \lor b] = a \lor b$

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00	0000000	000	
	000	000	000	
	00			

- Assume a toy model of two boys:
 - (16) EXH EXH kol boy arrived
 - a. $D = \{yossi, john\}.$
 - b. *a* :=yossi arrived; *b* :=john arrived
 - c. $\llbracket kol \text{ boy arrived} \rrbracket = \exists x \in D[boy(x) \land arrived(x)] \equiv a \lor b$
 - d. $Alt(\llbracket kol \text{ boy arrived} \rrbracket) = \{a \lor b, a, b\}$
 - e. $EXH_{Alt(a \lor b)}[a \lor b] = a \lor b$
 - f. $\begin{aligned} Alt(EXH_{Alt(a \lor b)}[a \lor b]) \\ &= \{EXH_{alt(a \lor b)}[a \lor b], EXH_{alt(a \lor b)}[a], EXH_{alt(a \lor b)}[b]\} = \\ &\{a \lor b, a \land \neg b, b \land \neg a\} \end{aligned}$

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00	0000000	000	
	000	0000	000	
	00	000	000	
	00			
	00			

- Assume a toy model of two boys:
 - (16) EXH EXH kol boy arrived
 - a. $D = \{yossi, john\}.$
 - b. *a* :=yossi arrived; *b* :=john arrived
 - c. $\llbracket kol \text{ boy arrived} \rrbracket = \exists x \in D[boy(x) \land arrived(x)] \equiv a \lor b$
 - d. $Alt(\llbracket kol \text{ boy arrived} \rrbracket) = \{a \lor b, a, b\}$
 - e. $EXH_{Alt(a \lor b)}[a \lor b] = a \lor b$
 - f. $Alt(EXH_{alt(a \lor b)}[a \lor b])$ = {EXH_{alt(a \lor b)}[a \lor b], EXH_{alt(a \lor b)}[a], EXH_{alt(a \lor b)}[b]} = {a \lor b, a \land \neg b, b \land \neg a}

g.
$$\begin{aligned} \mathsf{EXH}_{\mathsf{Alt}(\mathsf{EXH}_{\mathsf{Alt}(a \lor b)}[a \lor b])}[\mathsf{EXH}_{\mathsf{Alt}(a \lor b)}[a \lor b]] &= \\ (a \lor b) \land \neg[a \land \neg b] \land \neg[b \land \neg a] = (a \lor b) \land (a \leftrightarrow b) = a \land b \end{aligned}$$

Introduction	Data and preliminary analysis 000 000 00 00 00	Proposal: strengthened existential ○○○○○○○○ ○○●○ ○○○	Wrap up 000 000 000	References
Application				

Deriving NPI-kol

- In DE-environments no alternatives of the prejacent are non-weaker (i.e., all are entailed).
- ▶ No strengthening occurs and *kol* remains existential.
 - (17) EXH neg was.caused kol damage
 - a. [[neg was.caused kol damage]] = $\neg(a \lor b)$
 - b. $Alt([[neg was.caused kol damage]]) = \{\neg(a \lor b), \neg a, \neg b\}$
 - c. $EXH_{Alt(\neg(a\lor b))}[\neg(a\lor b)] = \neg(a\lor b)$
- Additional exhaustifications would not strengthen the meaning.

Introduction	Data and preliminary analysis 00 000 00 00 00	Proposal: strengthened existential ○○○○○○○○ ○○○● ○○○	Wrap up 000 000 000	References

- Fox (2007) on Free Choice inferences: disjunctive items could be strengthened without contradiction to conjunctions when in the scope of an existential operator.
 - (18) EXH EXH yossi may eat kol cookie
 - a. $D = \{cookie_1, cookie_2\}$
 - b. a := yossi eats cookie₁; b := yossi eats cookie₂
 - c. [[yossi may eat *kol* cookie]] = $\diamond(a \lor b)$

Introduction	Data and preliminary analysis 00 000 00 00 00	Proposal: strengthened existential ○○○○○○○○ ○○○● ○○○	Wrap up 000 000 000	References

- Fox (2007) on Free Choice inferences: disjunctive items could be strengthened without contradiction to conjunctions when in the scope of an existential operator.
 - (18) EXH EXH yossi may eat kol cookie
 - a. $D = \{cookie_1, cookie_2\}$
 - b. *a* :=yossi eats cookie₁; *b* :=yossi eats cookie₂
 - c. [[yossi may eat *kol* cookie]] = $\diamond(a \lor b)$
 - d. $Alt([[yossi may eat kol cookie]]) = \{\diamond(a \lor b), \diamond a, \diamond b\}$

Introduction	Data and preliminary analysis OO OOO OO OO OO OO	Proposal: strengthened existential ○○○○○○○○ ○○○● ○○○	Wrap up 000 000 000	References

- Fox (2007) on Free Choice inferences: disjunctive items could be strengthened without contradiction to conjunctions when in the scope of an existential operator.
 - (18) EXH EXH yossi may eat kol cookie
 - a. $D = \{cookie_1, cookie_2\}$
 - b. *a* :=yossi eats cookie₁; *b* :=yossi eats cookie₂
 - c. [[yossi may eat *kol* cookie]] = $\diamond(a \lor b)$
 - d. $Alt([yossi may eat kol cookie]) = \{\diamond(a \lor b), \diamond a, \diamond b\}$
 - e. $EXH_{A/t(\diamond(a \lor b))}[\diamond(a \lor b)] = \diamond(a \lor b)$

Introduction	Data and preliminary analysis OO OOO OO OO OO OO	Proposal: strengthened existential ○○○○○○○○ ○○○● ○○○	Wrap up 000 000 000	References

- Fox (2007) on Free Choice inferences: disjunctive items could be strengthened without contradiction to conjunctions when in the scope of an existential operator.
 - (18) EXH EXH yossi may eat kol cookie
 - a. $D = \{cookie_1, cookie_2\}$
 - b. *a* :=yossi eats cookie₁; *b* :=yossi eats cookie₂
 - c. [[yossi may eat *kol* cookie]] = $\diamond(a \lor b)$
 - d. $Alt([vossi may eat kol cookie]) = \{\diamond(a \lor b), \diamond a, \diamond b\}$
 - e. $EXH_{Alt(\diamond(a\lor b))}[\diamond(a\lor b)] = \diamond(a\lor b)$

f.
$$Alt(EXH_{Alt(\diamond(a\lor b))}[\diamond(a\lor b)]) = \{\diamond(a\lor b), \diamond(a)\land \neg \diamond(b), \diamond(b)\land \neg \diamond(a)\}$$

Introduction	Data and preliminary analysis OO OOO OO OO OO OO	Proposal: strengthened existential ○○○○○○○○ ○○○● ○○○	Wrap up 000 000 000	References

- Fox (2007) on Free Choice inferences: disjunctive items could be strengthened without contradiction to conjunctions when in the scope of an existential operator.
 - (18) EXH EXH yossi may eat kol cookie

a.
$$D = \{cookie_1, cookie_2\}$$

- b. *a* :=yossi eats cookie₁; *b* :=yossi eats cookie₂
- c. [[yossi may eat *kol* cookie]] = $\diamond(a \lor b)$
- d. $Alt([[yossi may eat kol cookie]]) = \{\diamond(a \lor b), \diamond a, \diamond b\}$

e.
$$EXH_{Alt(\diamond(a\lor b))}[\diamond(a\lor b)] = \diamond(a\lor b)$$

f.
$$Alt(EXH_{Alt(\diamond(a \lor b))}[\diamond(a \lor b)]) = \{\diamond(a \lor b), \diamond(a) \land \neg \diamond(b), \diamond(b) \land \neg \diamond(a)\}$$

g.
$$\begin{aligned} \mathsf{EXH}_{Alt(\mathsf{eXH}_{Alt}(\diamond(a\lor b))}[\diamond(a\lor b)])[\mathsf{EXH}_{Alt}(\diamond(a\lor b))](\diamond(a\lor b)]] &= \\ \diamond(a\lor b)\land \neg(\diamond(a)\land \neg\diamond(b))\land \neg(\diamond(b)\land \neg\diamond(a)) &= \\ \diamond(a\lor b)\land (\diamond(a)\leftrightarrow\diamond(b)) &= \diamond(a)\land\diamond(b) \end{aligned}$$

Introduction	Data and preliminary analysis 00 000 00 00	Proposal: strengthened existential ○○○○○○○○ ○○○● ○○○	Wrap up 000 000 000	References
	00			

- Fox (2007) on Free Choice inferences: disjunctive items could be strengthened without contradiction to conjunctions when in the scope of an existential operator.
 - (18) EXH EXH yossi may eat kol cookie

a.
$$D = \{cookie_1, cookie_2\}$$

- b. a := yossi eats cookie₁; b := yossi eats cookie₂
- c. [[yossi may eat *kol* cookie]] = $\diamond(a \lor b)$
- d. $Alt([[yossi may eat kol cookie]]) = \{\diamond(a \lor b), \diamond a, \diamond b\}$
- e. $EXH_{Alt(\diamond(a\lor b))}[\diamond(a\lor b)] = \diamond(a\lor b)$

$$Alt(EXH_{Alt(\diamond(a \lor b))}[\diamond(a \lor b)]) = \{\diamond(a \lor b), \diamond(a) \land \neg \diamond(b), \diamond(b) \land \neg \diamond(a)\}$$

- g. $\begin{aligned} \mathsf{E} X H_{Alt(\mathsf{E} X H_{Alt(\diamond(a \lor b))}] \diamond(a \lor b))} [\mathsf{E} X H_{Alt(\diamond(a \lor b))}] \diamond(a \lor b)]] &= \\ \diamond(a \lor b) \land \neg(\diamond(a) \land \neg \diamond(b)) \land \neg(\diamond(b) \land \neg \diamond(a)) = \\ \diamond(a \lor b) \land (\diamond(a) \leftrightarrow \diamond(b)) = \diamond(a) \land \diamond(b) \end{aligned}$
- Note that since kol lacks scalar alternatives, we do not get the scalar implicature that ¬ ◊ (a ∧ b).

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00	0000000	000	
	000	0000	000	
	00	000	000	
	00			

Embedding in a general theory of PSIs

Outline

Introduction

Data and preliminary analysis

The universal import of *kol* The NPI-like behavior of *kol* An apparent challenge: Free choice inferences with *kol* An immediate solution: wide scope universal Problem: interpretation in interrogatives

Proposal: strengthened existential

Assumptions

Application

Embedding in a general theory of PSIs

Wrap up

Previous proposals: discussion Open issues Summary

= na0

・ロト ・回ト ・ヨト ・ヨト

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00 000 00 00 00	0000000 0000 0●0	000 000 000	
Embedding in a gene	eral theory of PSIs			

Presuppositional exhaustification

- Problem: assuming innocent excludability won't derive contradictions for items like *any* in UE environments, contradictions which are crucial in explaining the distribution of such items within a general theory of polarity sensitivity (cf. Krifka (1995), Chierchia (2013)).
- An idea on which a solution could be based is to retain Innocent Excludability while adding a presupposition to the exhaustivity operator. In this we follow Danny Fox (p.c.) and modify a suggestion discussed by Chierchia (2013).

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
		0000000 0000 000	000 000 000	

Embedding in a general theory of PSIs

Presuppositional exhaustification

- (19) Presuppositional exhaustivity operator revised (following Chierchia (2013)[p. 186] & Danny Fox (p.c.)): $EXH_{PR}(Alt(p))(p) = \begin{cases}
 EXH_{IE}(Alt(p))(p) \text{ if for every } q \in Alt(p) : \begin{cases}
 Either: EXH_{IE}(Alt(EXH_{IE}(Alt(p))(p))(EXH_{IE}(Alt(p))(p)) \rightarrow q) \\
 Or: EXH_{IE}(Alt(p))(p)(EXH_{IE}(Alt(p))(p)) \rightarrow \neg q
 \end{cases}$ Undefined otherwise
- Assuming that alternatives introduced by PSIs are unprunable, we thus predict that for every alternative introduced by a PSI, exhaustification must determine its truth-value.
- Such a requirement predicts items like any to be bad in episodic UE environments while also predicting Free Choice inferences in possibility contexts.

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
		0000000 0000 000	000 000 000	

Outline

Introduction

Data and preliminary analysis

The universal import of kol

The NPI-like behavior of kol

An apparent challenge: Free choice inferences with kol

An immediate solution: wide scope universal

Problem: interpretation in interrogatives

Proposal: strengthened existential

Assumptions

Application

Embedding in a general theory of PSIs

Wrap up

Previous proposals: discussion

Open issues

Summary

э.

・ロン ・回と ・ヨン ・ ヨン

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
		0000000 0000 000		

Previous proposals: discussion

Outline

Introduction

Data and preliminary analysis

The universal import of *kol*

The NPI-like behavior of *kol*

An apparent challenge: Free choice inferences with kol

An immediate solution: wide scope universal

Problem: interpretation in interrogatives

Proposal: strengthened existential

Assumptions

Application

Embedding in a general theory of PSIs

Wrap up

Previous proposals: discussion

Open issues Summary

= na0

・ロト ・回ト ・ヨト ・ヨト

Introduction	Data and preliminary analysis OO OOO OO OO OO	Proposal: strengthened existential 00000000 0000 000	Wrap up O●O ○○○ ○○○	References	
Previous proposals: discussion					

Previous proposals: discussion

- Ambiguity: Levy (2008) argues that NPI-kol and FC-kol are existential quantifiers, while U-kol must be given a universal semantics.
- ► U-*kol* then is a counterpart of *every*, while NPI-*kol* and FCI-*kol* are (roughly) a counterpart of *any*.

Introduction	Data and preliminary analysis 00 000 00 00 00	Proposal: strengthened existential 00000000 0000 000	Wrap up ○●○ ○○○ ○○○	References	
Previous proposals: discussion					

Previous proposals: discussion

- Ambiguity: Levy (2008) argues that NPI-kol and FC-kol are existential quantifiers, while U-kol must be given a universal semantics.
- ► U-kol then is a counterpart of every, while NPI-kol and FCI-kol are (roughly) a counterpart of any.
 - This is an appealing analysis. However, we propose that a unified account is possible, if *kol* is taken to be an existential quantifier, with no need for assuming different lexical entries.

Introduction	Data and preliminary analysis 00 000 00 00 00	Proposal: strengthened existential 00000000 0000 000	Wrap up ○○● ○○○	References	
Previous proposals: discussion					

 Universal indefinite: Tonciulescu (2011), based on Menéndez-Benito's (2005) analysis for Free Choice *any*, argues that *kol* is a pronoun which denotes a set of individual alternatives and agrees with a (propositional) universal quantifier.

3

(日) (同) (三) (三)

00 00 00	000	000	
discussion			
	00 00 discussion	00 000 00 discussion	00 000 000 00 discussion

- Universal indefinite: Tonciulescu (2011), based on Menéndez-Benito's (2005) analysis for Free Choice any, argues that kol is a pronoun which denotes a set of individual alternatives and agrees with a (propositional) universal quantifier.
 - In her analysis, even U-kol in UE episodic contexts such as (1-a)-(1-b) needs to involve (possibility) modality. But this modality is empirically unjustified, since the cases of U-kol in (1-a)-(1-b) don't seem to have any modal flavor.
 - Our proposal does not ascribe any kind of modality to cases of U-kol.

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
		0000000 0000 000	000 000 000	

Outline

Introduction

Data and preliminary analysis

The universal import of kol

The NPI-like behavior of kol

An apparent challenge: Free choice inferences with kol

An immediate solution: wide scope universal

Problem: interpretation in interrogatives

Proposal: strengthened existential

Assumptions

Application

Embedding in a general theory of PSIs

Wrap up

Previous proposals: discussion

Open issues

Summary

= na0

・ロト ・回ト ・ヨト ・ヨト

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00 000 00 00 00	0000000 0000 000		

- kol + definite restrictor is unambiguously universal:
 - (20) yosi (lo) pagaS et kol ha-yeladim
 yossi (neg) met ACC kol the-children
 (lt is not true that) Yossi met all the children.

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00 000 00 00 00	0000000 0000 000		

- kol + definite restrictor is unambiguously universal:
 - (20) yosi (lo) pagaS et kol ha-yeladim
 yossi (neg) met ACC kol the-children
 (lt is not true that) Yossi met all the children.
 - A possible thought: *kol* quantifies over a singleton set which is the result of applying the definite article to the (plural) noun.

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00 000 00 00 00	0000000 0000 000		

- kol + definite restrictor is unambiguously universal:
 - (20) yosi (lo) pagaS et kol ha-yeladim
 yossi (neg) met ACC kol the-children
 (lt is not true that) Yossi met all the children.
 - A possible thought: *kol* quantifies over a singleton set which is the result of applying the definite article to the (plural) noun.
 - ► A possible thought #2: low EXH.

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00 000 00 00 00	0000000 0000 000		

- kol + definite restrictor is unambiguously universal:
 - (20) yosi (lo) pagaS et kol ha-yeladim yossi (neg) met ACC kol the-children (lt is not true that) Yossi met all the children.
 - A possible thought: *kol* quantifies over a singleton set which is the result of applying the definite article to the (plural) noun.
 - ► A possible thought #2: low EXH.
- U-kol sometimes seems to be available in DE contexts in which EXH is not supposed to occur (based on the distribution of scalar implicatures).

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00 000 00 00 00	0000000 0000 000		

- kol + definite restrictor is unambiguously universal:
 - (20) yosi (lo) pagaS et kol ha-yeladim
 yossi (neg) met ACC kol the-children
 (lt is not true that) Yossi met all the children.
 - ► A possible thought: *kol* quantifies over a singleton set which is the result of applying the definite article to the (plural) noun.
 - A possible thought #2: low EXH.
- U-kol sometimes seems to be available in DE contexts in which EXH is not supposed to occur (based on the distribution of scalar implicatures).
 - ► A possible solution: in these cases *kol* is focused and thus requires EXH even in DE environments. Whether it is an empirically justified assumption or not we leave for future research.

Introduction	Data and preliminary analysis 000 000 00 00 00	Proposal: strengthened existential 00000000 0000 000	Wrap up ○○○ ○○● ○○○	References
Open issues				

- Certain factors interfere with how easy it is to get existential interpretation. More specifically, NPI-kol prefers 'abstract' restrictors.
- High/low register as vacuous vs. non-vacuous EXH.

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
		0000000 0000 000		

Outline

Introduction

Data and preliminary analysis

The universal import of kol

The NPI-like behavior of kol

An apparent challenge: Free choice inferences with kol

An immediate solution: wide scope universal

Problem: interpretation in interrogatives

Proposal: strengthened existential

Assumptions

Application

Embedding in a general theory of PSIs

Wrap up

Previous proposals: discussion

Open issues

Summary

= nar

・ロト ・回ト ・ヨト ・ヨト

Introduction	Data and preliminary analysis 000 000 00 00 00	Proposal: strengthened existential 00000000 0000 000	Wrap up ○○○ ○○○ ○●○	References
Summary				

- ▶ We have presented data showing that Hebrew *kol*, which is traditionally considered a universal quantifier, is in fact an existential as is evident in questions ((8)).
- Our analysis is that the universal import of *kol* is only a derivative of it being an existential that:
 - 1. Must undergo exhaustification.
 - 2. Introduces domain alternatives and lacks a scalar alternative.
- We claimed that this is in line with different phenomena of disjunctions with conjunctive meanings for which analyses in similar terms have been suggested.
- We sketched a possible way for embedding our analysis in a general theory of PSIs while maintaining the notion of Innocent Excludability.

Introduction	Data and preliminary analysis 00 000 00 00 00	Proposal: strengthened existential 00000000 0000 000	Wrap up ○○○ ○○○ ○○●	References
Summary				

Acknowledgements

We owe a lot to the following people and would like to thank them for inspiring discussions, helpful advice and support.

- Danny Fox, Gennaro Chierchia, Luka Crnič.
- Elitzur Bar-Asher Siegal, Nora Boneh, Edit Doron, Yael Greenberg, Ivy Sichel.
- Eli Asor, Galit Bary, Itay Bassi, Henry Brice, Naomi Granofsky, David Kashtan, Ran Lanzet, Elior Sulem.
- 3 anonymous Sinn und Bedeutung reviewers.
- ► 5 anonymous ESSLLI reviewers.

All mistakes and shortcomings are ours.

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00 000 00 00 00	0000000 0000 000	000 000 000	

References

- CHIERCHIA, G. Broaden your views: Implicatures of domain widening and the "logicality" of language. *Linguistic inquiry* 37, 4 (2006), 535–590.
- [2] CHIERCHIA, G. Logic in Grammar: Polarity, Free Choice, and Intervention. Oxford University Press, 2013.
- [3] DORON, E., AND MITTWOCH, A. Polarity-sensitive kol: Universal or existential. In talk given at Second Annual Conference on Theoretical Linguistics, Jerusalem (1986).
- [4] FOX, D. Free choice and the theory of scalar implicatures. Presupposition and implicature in compositional semantics 71 (2007), 112.
- [5] FRANCEZ, I., AND GOLDRING, K. Quantifiers in modern hebrew. In Handbook of Quantifiers in Natural Language. Springer, 2012, pp. 347–397.
- [6] KRIFKA, M. The semantics and pragmatics of polarity items. Linguistic analysis 25 (1995), 209–257.
- [7] LEVY, A. Towards a Unified Approach of the Semantics of 'any'. PhD thesis, Bar Ilan University, 2008.
- [8] MENÉNDEZ-BENITO, P. The grammar of choice. PhD thesis, University of Massachusetts Amherst, 2005.
- [9] MEYER, M.-C. "or else", a new kind of disjunction. In: Meaning, Context and Implicit Context, working papers, Conference at CNRS Thematic School, p. 121, 2011.
- [10] RAJ SINGH, KEN WEXLER, A. A. D. K. D. F. Children's interpretation of disjunction and the theory of scalar implicatures. Talk given at the McGill-Jülich dialogue, 2012.
- [11] TONCIULESCU, K. C. Licensing Conditions for Indefinite Pronouns in Modern Hebrew. PhD thesis, University of Ottawa, 2011.

э

erences
e

(21)

Appendix: Deriving U-kol

a.
$$\begin{bmatrix} kol \text{ boy arrived} \end{bmatrix} := p$$

$$p = \exists x \in D [B(x) \land L(x)]$$

$$Alt(p) = \{\exists x \in D' [B(x) \land L(x)] : D' \subseteq D\}$$
b.
$$q := EXH [Alt(p)] [p]$$

$$q = p \text{ Since no domain-alternative is innocently excludable}$$
c.
$$Alt(q) = \{EXH [Alt(p)] [p] : D' \subseteq D\} =$$

$$\{(\exists x \in D_i [B(x) \land L(x)]) \land \neg (\exists x \in D \smallsetminus D_i [B(x) \land L(x)]) : D_i \subseteq D\}$$
d.
$$EXH [Alt(q)] [q]$$

$$= q \land \forall D_i \subset D [\neg [(\exists x \in D_i [B(x) \land L(x)])$$

$$\land \neg (\exists x \in D \frown D_i [B(x) \land L(x)])$$

$$= (\exists x \in D [B(x) \land L(x)])$$

$$\land \forall D_i \subset D [[\exists x \land \Delta L(x)])$$

$$\land \forall D_i \subset D [[\exists x \land \Delta L(x)])$$

$$\land \forall D_i \subseteq D [B(x) \land L(x)])$$

$$\land (\forall x \in D [B(x) \land L(x)])$$

< □ > < □ > < □ > < 三 > < 三 > < 三 > へへで I undercover 44/45

Introduction	Data and preliminary analysis	Proposal: strengthened existential	Wrap up	References
	00	0000000	000	
	000	0000	000	
	00	000	000	
	00			
	00			

Deriving NPI-kol and FC-kol

(22)
$$\begin{bmatrix} [neg was.caused kol damage] := p \\ p = \neg [\exists x \in D [damage(x) \land was.caused(x)]] \equiv EXH [Alt(p)] [p] \\ (23) a.
$$\begin{bmatrix} yossi may eat kol cookie] := p \\ p = \diamond [\exists x \in D [cookie(x) \land eat(x) (yossi)]] \\ Alt(p) = \{\diamond [\exists x \in D' [cookie(x) \land eat(x) (yossi)]] : D' \subseteq D \} \\ b. q := EXH [Alt(p)] [p] \\ q = p Since no domain-alternative is innocently excludable \\ c. Alt(q) = {EXH [Alt(p)] [p] : D' \subseteq D } = \\ {((\diamond [\exists x \in D_i [cookie(x) \land eat(x) (yossi)]]) : D_i \subseteq D \\ d. EXH [Alt(q)] [q] \\ = q \land \forall D_i \subset D [\neg [(\diamond [\exists x \in D_i [cookie(x) \land eat(x) (yossi)]]) \\ \land \neg (\diamond [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ = (\diamond [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\diamond [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\diamond [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\diamond [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\diamond [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\diamond [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\diamond [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\diamond [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\diamond [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\diamond [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\diamond [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\diamond [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\diamond [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\diamond [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\forall [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\diamond [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\diamond [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\forall [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\diamond [\exists x \in D \land D_i [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\forall [d i \in D \land eat(x) (yossi)]]) \\ \Rightarrow (\forall [d i \in D \land eat(x) (yossi)]]) \\ \Rightarrow (\forall [d i \in D [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\forall [d i \in D [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\forall [d i \in D [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\forall [d i \in D [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\forall [d i \in D [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\forall [d i \in D [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\forall [d i \in D [cookie(x) \land eat(x) (yossi)]]) \\ \Rightarrow (\forall [d i \in D [cookie(x) \land eat(x) (yo$$$$

= 990